
D-modules on stacks
Merrick Cai

February 14, 2024

Contents

1 Overview 2

2 Stacks 2
2.1 Motivation . 2
2.2 Groupoids . 4
2.3 From presheaves to prestacks . 4
2.4 From sheaves to stacks . 6
2.5 Algebraic spaces . 9
2.6 Artin stacks . 10
2.7 BG . 11

3 Many abstract notions 12
3.1 Why derived categories? . 12
3.2 Finiteness conditions and IndCoh . 14
3.3 Ind-schemes . 16
3.4 deRham prestack . 17
3.5 Monadic pairs . 19

4 D-modules via crystals 21
4.1 Crystals . 21
4.2 oblv and ind . 22
4.3 t-structure on Crys . 23
4.4 Base change . 23
4.5 D-modules on (smooth) schemes . 24
4.6 Example: D-modules on BG . 25

Merrick Cai Overview

5 D-modules via sheaves 26
5.1 Motivation from classical case . 26
5.2 Constructing DX ∈ IndCoh(X× X) . 27
5.3 Multiplication on DX . 27
5.4 D-modules via DX . 29
5.5 The two constructions agree . 30
5.6 D-modules on BG, part 2 . 32

1 Overview

These notes were made in preparation of a talk for GL Support Group seminar, on February 14, 2024,
on the topic “D-modules on stacks.” I’ll forgo certain technical details, which hopefully will increase the
readability, but if you really want to know, it’s mostly in [GR17]. Another helpful exposition is certain
parts in [DG13].

Acknowledgements

I would like to thank Dylan Pentland for very insightful viewpoints, Taeuk Nam for pretty much teaching
me the entirety of §2, and a HUGE thanks to Wyatt Reeves who basically taught me everything else.

2 Stacks

In this section, we briefly review basic notions of stacks.

2.1 Motivation

Sheaves are the abstract machinery which allows us to understand how local data patches together into
global data. Not everything can be understood globally; indeed, many things need to first be understood
locally, and then we attempt to glue it together. A prime example of this idea is the existence of partitions
of unity on smooth manifolds. What partitions of unity allow us to do is to construct the existence of say,
a bilinear form, locally - and then patch it together into a global bilinear form. This is especially useful in
many cases because it allows us to essentially reduce many construction problems to working on (an open
set of) Rn, instead of an abstract manifold. Another example is vector bundles - what characterizes vector
bundles isn’t its global structure, but rather its local structure, which always look the same. What then
differentiates one vector bundle from another is how the local pieces are patched together.

While extremely powerful constructions such as partitions of unity don’t exist everywhere, the basic
notion is ubiquitous, in the form of sheaves and presheaves. A presheaf on a topological space X assigns

2

Merrick Cai Stacks

to every open set a collection of objects associated to that open set, along with maps indicating how these
restrict when we move from an open set U to an open set V ⊂ U (satisfying some basic compatibility
rules). For example, suppose we wanted to record the data of smooth functions on a manifold X. Then
we could declare a (pre)sheaf Oan

X which records the data of smooth functions locally: on an open set U ,
Osm

X (U) consists of (the set, group, or ring of) all smooth functions on U . A function f ∈ Osm
X (U) then

restricts to a function on V ⊂ U in a canonical way: just by restricting the domain of f to V . Therefore,
restriction maps U ⊃ V on the (pre)sheaf Osm

X simply restrict the domain of a function from U to V .
What separates sheaves from presheaves is the data of how to glue these functions together. In essence,

a sheaf is a presheaf where the gluing is allowed. In the above example, Osm
X has more than just the

restriction maps: a function is determined entirely by its restrictions to an open cover. What this means
is twofold: first, to check that two functions agree, it suffices to check that they agree on their restrictions
to an open cover; and second, to specify a function, it suffices to specify functions on an open cover, such
that they agree on overlaps (i.e., fi ∈ Osm

X (Ui) for {Ui}i covering U such that fi|Ui∩Uj = fj |Ui∩Uj). In
particular, we know that we can always glue together local functions into a global one, given that there’s
nothing that causes the function to fail to actually be a function.

So a sheaf is basically the answer to: if we wanted to know about every THING about a space, where
THING can be continuous functions, holomorphic functions, etc. - anything “clearly defined,” then we
define a sheaf which just assigns to each open set the THINGs defined over that set.

The goal of stacks is to copy the idea of sheaves, but to more difficult objects than functions. Just as
how we wanted a sheaf to tell us about every THING on a space, we can now ask a stack to tell us every
THING on a space where THING is no longer so clearly defined. Let us explain what “clearly defined”
means. The key point is that functions are extremely rigid: there’s no such thing as an “isomorphic”
function. A function is simply determined by its values on every point. However, many things are only
defined up to isomorphism. For example, to specify a (rank n) vector bundle V on a space X, it suffices to
specify transition functions, i.e. isomorphisms

φi,j : Cn × (Ui ∩ Uj) ∼−→ Cn × (Ui ∩ Uj)

with φj,i = φ−1
i,j . The crucial part is that these isomorphisms need to satisfy the compatibility relation

called the triple intersection condition: on Ui ∩ Uj ∩ Uk, if we move in a circle

Ui ∩ Uj ∩ Uk

Ui ∩ Uj ∩ Uk Ui ∩ Uj ∩ Uk

φi,j

φj,k

φk,i

then we get the identity, i.e.
φk,i ◦ φj,k ◦ φi,j = idUi∩Uj∩Uk

.

The reason why this is necessary is because vector bundles are not defined uniquely. There are many

3

Merrick Cai Stacks

different ways to construct isomorphic vector bundles. For example, in algebraic geometry, any two linearly
equivalent divisors yield isomorphic line bundles, but notably they are not actually the same sheaf, as can
be seen by looking at exactly which functions are defined over each open set. In many cases, there is no
“one way” to specify an object - each object is defined only up to isomorphism. This leads us to the notion
of a groupoid.

2.2 Groupoids

The basic idea is that sets are just a collection of objects, and each object is different from each other. For
example, every continuous function on a space is distinct, because by definition they have to disagree on
at least one point. What if objects were not so well-defined: like vector bundles? In this case, we can
have two vector bundles which are not the same, but they are isomorphic. As in the construction of a
vector bundle, we need to remember the local data along with the isomorphisms in order to check whether
they can indeed glue together into a global vector bundle. This wasn’t necessary for the case of functions
because they were literally the same function. When we have isomorphic objects, then not only do we
need to remember all of the objects, but also the isomorphisms between them (equivalently, this is when
objects have automorphisms).

Definition 2.2.1. A groupoid is a category where every morphism is an isomorphism.

In essence, a groupoid is just remembering which objects are isomorphic, because it’s no longer so clear
as to just saying what vector bundle it is. The category of all groupoids is naturally a 2-category.

Definition 2.2.2. The 2-category Grpd consists of:

• the objects are groupoids,
• the 1-morphisms are functors (between groupoids),
• the 2-morphisms are natural transformations (of the functors).

2.3 From presheaves to prestacks

A presheaf can be written as a contravariant functor from the category of open sets of X, Open(X), to the
category of sets Set. The category Open(X) is the category where the objects are open sets, and there is a
single map from V → U iff V ⊃ U (this includes the case U = V , whence the map is the identity map).
This is just a fancy way of saying that a sheaf F assigns to every open set U ⊂ X, some set F(U) in Set,
and every time we have a map V → U in Open(X) corresponding to V ⊂ U , then we have a corresponding
map resU

V : F(U)→ F(V).
Actually, we want to be a bit more general here. Let’s work with the full category of schemes Sch;

sometimes we will take this to mean the category of k-schemes, which we can denote by Schk. Then a

4

Merrick Cai Stacks

presheaf is just a functor Schop → Grpd. In other words,

PreSh(Sch) = Fun(Schop, Set).

Definition 2.3.1. A prestack is a functor Schop → Grpd.

In other words, a prestack X just assigns to every scheme a groupoid, and every time we have a morphism
of schemes X ⊂ Y , we have a functor of groupoids X(Y)→ X(X), along with some compatibility conditions.

These compatibility conditions are actually quite important. Let’s analyze it closely. Say we have a
prestack X.

(0) On the level of objects, X will send each scheme to a groupoid (remember, this is an entire category!).
(1) On the level of morphisms, for a map of schemes A→ B, X will send this to a map of groupoids, i.e.

a functor resB
A : X(B)→ X(A).

(2) There is no nontrivial 2-category structure on our source Schop. So we sort of end here... except
that item (1) doesn’t actually make sense because although equality of morphisms makes sense in the
1-category Schop, it doesn’t make sense in the target Grpd. Normally when we have a (contravariant)
functor F of 1-categories, we expect F (g ◦ f) = F (f) ◦ F (g), and the equality makes sense since
we’re living in a 1-category. Now, however, for morphisms of schemes X

f−→ Y
g−→ Z, we only know

that X(f) ◦X(g) is naturally isomorphic to X(g ◦ f). So additionally, the data of a prestack X will
include natural transformations αf,g : X(f) ◦ X(g) ∼−→ X(g ◦ f). These natural isomorphisms must
then play the “coherency” role in “making things functorial.” What’s the condition? Well, we have
to go one step up: to check that these natural transformations are themselves compatible, we need
to check that for every chain of maps

X
f−→ Y

g−→ Z
h−→W,

the induced diagram commutes:

X(f) ◦ X(g) ◦ X(h)

X(g ◦ f) ◦ X(h) X(f) ◦ X(h ◦ g)

X(h ◦ g ◦ f)

αf,g×id id×αg,h

αg◦f,h αf,h◦g

By “commutes,” we mean that the two compositions of natural transformations should literally be
equal. This makes sense because they are 2-morphisms living in a 2-category; there’s no higher
structure, so we can genuinely say that they’re equal.

The moral is basically that adding higher structure to the category means we can’t say things are
“equal,” only “isomorphic,” but these isomorphisms then need to be compatible on a higher level, which

5

Merrick Cai Stacks

we check in this way until we reach the end of the structure (in which case we can genuinely say they’re
equal). However if we deal with infinity-categories then it never ends...

2.4 From sheaves to stacks

Mostly we’ve been working with the open affine subsets of a scheme. More generally, we want to work
over some Grothendieck topology. There are several which are very popular:

S = Zar ⊂ Ét ⊂ Sm ⊂ fppf ⊂ fpqc.

They are: the Zariski site, the étale site, the smooth site, the fppf site, and the fpqc. The unifying idea
is that to each object X, we require a collection of covers, each of which is a collection of maps (from
arbitrary objects) to X, which are closed under certain operations. Basically this is a generalization of the
data of an open cover in ordinary topology; people realized that it wasn’t actually important that these
things were covers in a literal sense, but moreso that they behaved in certain ways and obeyed certain
rules.

In general, we always want to work with the category Sch of schemes; sometimes this will mean k-schemes
for some field k. Endow it with any Grothendieck topology you want.

Definition 2.4.1. Choose a Grothendieck topology S on Schop. A sheaf F is a presheaf Schop
S → Set

satisfying 2 conditions: uniqueness of gluing and existence of gluing.

Let’s spell this out carefully. Say we have a cover U = {Ui}i∈I of X. Make the notation Uij = Ui ∩ Uj ,
etc.

(1) Uniqueness of gluing. If we have two elements x, y ∈ F(X) such that resX
Ui

x = resX
Ui

y ∈ F(Ui)
for all i ∈ I, then x = y ∈ F(X).

(2) Existence of gluing. Suppose we have xi ∈ F(Ui) for all i such that resUi
Uij

xi = resUj

Uij
xj ∈ F(Uij)

for all i, j. Then there exists x ∈ F(X) for which resX
Ui

x = xi for all i.

This is alternatively captured by the following abstract notion. Consider U now as a single object (for
example, take the disjoint unions of the Ui to form a single object). Then we have a commutative diagram

U ×X U U X.

From this, applying F we get

F(X) F(U) F(U ×X U)

lim (F(U)→→F(U ×X U))

as well as an induced map F(X) to the limit over the rest of the diagram. Now the first condition,
uniqueness of gluing, is equivalent to this map being injective. The second condition, existence of gluing,

6

Merrick Cai Stacks

is equivalent to this map being surjective. Thus F is a sheaf iff this map is an isomorphism.
Now let’s move on to stacks. Once again,

Definition 2.4.2. A stack X is a prestack Schop
S → Grpd satisfying the two conditions uniqueness of

gluing and existence of gluing.

The only thing is, these conditions become a bit more involved. Let’s spell it out concretely. Let
U = {Ui}i∈I be a cover of X, and let X be a prestack. For X to be a stack, it needs to satisfy the following
two conditions.

(1) Uniqueness of gluing. Suppose we have the data of x, y ∈ X(X) (remember, X(X) is a groupoid)
and isomorphisms αi : resX

Ui
x
∼−→ resX

Ui
y in (another groupoid) X(Ui) for all i, such that resUi

Uij
αi =

resUj

Uij
αj for all i, j, as morphisms in the category X(Uij) (this is a groupoid, hence an honest category,

which is why we can ask that two morphisms are actually the same).
Then there exists a unique isomorphism α : x

∼−→ y in X(X) such that resX
Ui

α = αi for all i.
(2) Existence of gluing. Suppose we have the data of xi ∈ X(Ui) for all i, along with isomorphisms βij :

resUi
Uij

xi
∼−→ resUj

Uij
xj in the groupoid X(Uij), such that they are compatible along triple intersections

in pretty much any way you restrict, i.e. the following diagram commutes:

resUij

Uijk
◦ resUi

Uij
xi resUij

Uijk
◦ resUj

Uij
xj

resUik
Uijk
◦ resUi

Uik
xi resUjk

Uijk
◦ resUj

Ujk
xk

resUik
Uijk
◦ resUk

Uik
xk resUjk

Uijk
◦ resUk

Ujk
xk

res
Uij
Uijk

βij

resUik
Uijk

βik res
Ujk
Uijk

βjk

Here, the double lines indicate canonical isomorphisms obtained from the data of X as a prestack.
Strictly speaking, we should actually expand the diagram to accommodate the isomorphisms encoded
in these double lines, but we’ll omit that for readability. The requirement that this diagram
“commutes” is asking for an equality of morphisms either way you go around the diagram, which is
fine since it just needs to be an equality of morphisms in the 1-category X(Uijk).

Assuming all this is satisfied, then there exists x ∈ X(X) and isomorphisms γi : resX
Ui

x
∼−→ xi for

all i (remember that we cannot actually say that they’re the same...) such that the γi are compatible
(with each other, the restriction functors, the βij , etc...); in other words, for all i, j, the following

7

Merrick Cai Stacks

diagram commutes:

resUi
Uij
◦ resX

Ui
x resUi

Uij
xi

resX
Uij

x

resUj

Uij
◦ resX

Uj
x resUj

Uij
xj

resUi
Uij

γij

∼

∼

resUi
Uij

γj

∼ βij

Ok, so we finally wrote down all of the conditions concretely. As you might imagine, this gets horrifyingly
congested as the categories get more complicated. On the other hand, returning to the more abstract
format, take U to be a single object again (for example, taking a disjoint union of the Ui)’ we have a
commutative diagram

U ×X U ×X U U ×X U U X

Applying X, we get

X(X) X(U) X(U ×X U) X(U ×X U ×X U)

lim
(
X(U)→→X(U ×X U)

→
→
→
X(U ×X U ×X U)

)
There’s once again an induced map X(X) to the limit over the rest of the diagram. The uniqueness
of gluing implies that this map is fully faithful, while the existence of gluing implies that this map is
essentially surjective. (Note that “injective” and “surjective” don’t actually mean anything on the level of
groupoids, which are 1-categories!) To summarize, X is a stack iff this map is an equivalence of
categories.

Remark 2.4.3. Note that sets are naturally groupoids where we have no non-identity morphisms; concretely,
every set can be stupidly made into a groupoid by having the objects be the elements of this set, and
the only morphisms being the identity maps on each element. Then a scheme, which itself is a sheaf
(with extra conditions such as being locally affine), is a map Schop → Set ⊂ Grpd. Since there 2-category
structure is completely trivial if we stay within Set, the rest of the coherence conditions are essentially just
trivial (every time we ask for an isomorphism in the conditions to be a stack, it’s actually just equality as
an element of the set). This means that schemes are always stacks.

Remark 2.4.4. Since any scheme X ∈ SchS (for any of the Grothendieck topologies we considered) is locally
affine (i.e. has a cover by affine schemes; this is true by definition in the Zariski site, and all other sites we
consider are finer), actually every sheaf and stack is entirely determined by its values on Affop ⊂ Schop,
the category of affine schemes. But since Affop = CommRing, the category of commutative rings, we can

8

Merrick Cai Stacks

just regard stacks and sheaves to be functors from CommRing instead of from Schop. (If we want to work
over a base field k, then we just get CommAlgk, the category of commutative k-algebras.) This is not
true for prestacks and presheaves - we need descent properties so that we can consider only the smaller
subcategory of affine schemes.

2.5 Algebraic spaces

Algebraic spaces are the first generalization of schemes.

Definition 2.5.1. A map f : X→ Z of prestacks is schematic (i.e., representable by a scheme) if for all
maps S → Z where S is a scheme, then X×Z S is also a scheme.

Basically, this means that the base change of the map X→ Z by a scheme (mapping to Z) still gives us
a scheme:

still a scheme S, a scheme

X Z
f

⌟

Proposition 2.5.2. Let X be an étale sheaf, i.e. a functor Schop

Ét → Set satisfying the sheaf axioms. The
following are equivalent:

(i) The diagonal map ∆ : X → X ×X is schematic.
(ii) For all maps S1 → X, S2 → X where S1, S2 are schemes, then S1 ×X S2 is still a scheme.

(iii) Every map from a scheme S → X is schematic.

Proof. (i)⇐⇒ (ii) is essentially tautological, since a map to X ×X is just the data of giving two maps
S1, S2 → X.

(ii)⇐⇒ (iii) is similarly tautological, since S → X is schematic iff for all maps from another scheme
S′ → X, the fiber product S ×X S′ is a scheme. □

Definition 2.5.3. An algebraic space is an étale sheaf X on Sch (i.e. a functor Schop

Ét → Set satisfying
the sheaf axioms) which satisfies the following two conditions:

(1) Any of the equivalent conditions in Proposition 2.5.2.
(2) X admits an étale cover by a scheme C, i.e., for any map S → X from a scheme S, then the fiber

product C ×X S is a scheme, and furthermore the base change C ×X S → S is an étale cover of
schemes.

C ×X S S

C X

étale cover

⌟

9

Merrick Cai Stacks

Remark 2.5.4. In a similar vein, we can ask for all sorts of nice (i.e., preserved by base change) properties
coming from schemes to generalize to schematic maps. The condition is pretty much that the base change
of this schematic map by a map from a scheme gives a map of schemes with the desired property.

Example 2.5.5. The functor A1/Z is an étale an algebraic space. The scheme A1 sends a commutative
ring R to its underlying set of elements, also denoted by R. This also has the structure of an abelian
group, hence has a canonical Z-action, and the resulting quotient is an algebraic space.

2.6 Artin stacks

Definition 2.6.1. An Artin stack, or an algebraic stack, is an étale stack X on schemes (i.e. a functor
Schop

Ét → Grpd satisfying the stack conditions) satisfying the following conditions:

(1) The diagonal map ∆ : X→ X× X is representable by an algebraic space.
(2) X admits a smooth cover by a scheme.

Remark 2.6.2. Actually we only require X to have a smooth cover by an algebraic space, but algebraic
spaces have a smooth cover by a scheme (by definition), so we might as well go straight to the cover by a
scheme.

The smooth cover part is a bit of a technical definition, so we’ll omit the details for now.
Artin stacks are the type of stack that we can (sometimes) have geometric notions, coming from the

smooth cover by a scheme. For example, there’s a notion of a tangent space at a point. A point of an
Artin stack X over a field k is just a map Spec k → X. Let’s recall the usual definition of tangent space of
a k-scheme Y at a point p ∈ Y (k). Then we have a natural map π : k[ε]/ε2 → k which induces a map
Y (k[ε]/ε2) → Y (k). The preimage of p in the set Y (k[ε]/ε2) is defined to be the tangent space of Y at
p; this has a natural structure of a k-vector space. We can adopt this notion for Artin stacks. For an
Artin stack X, we again have a natural map (really, functor) π : X(k[ε]/ε2)→ X(k), as maps of groupoids.
A point in X is just an element p of X(k), and the preimage of this functor at p is defined to be the
tangent space at that point p; this is a groupoid. It will turn out this is even a vector space groupoid,
because the objects carry a vector space structure and the automorphisms of each object are also a vector
space. Actually what happens is that the objects of this preimage form some vector space C0, and the
automorphisms of the identity object form some vector space C−1, so that we have a complex C−1 d−→ C0

such that Hom(c1, c2) = {f ∈ C−1 | df = c1 − c2}. This gives us a way to describe the tangent space as a
vector space with automorphisms on each object, where the automorphisms are also a vector space.

Using the notion of tangent space, we can give the notion of dimension. If a point on an Artin stack is
smooth (which is a more technical definition), then we can just define the dimension of the Artin stack to
be the Euler characteristic of the complex C−1 → C0, or dim H0 − dim H−1.

A better way to define dimension is via relative dimension: we just need to know that dimension behaves
well under base change. Then to an Artin stack X, we can take a smooth cover by a scheme U → X. Then

10

Merrick Cai Stacks

for some map from a scheme Y → X such that the base change U ×X Y is a scheme, then the relative
dimension dim U ×X Y − dim Y is equal to the relative dimension dim U − dimX; therefore, we can define
dim X := dim U − dim U ×X Y + dim Y (all of which are schemes, hence have a notion of dimension).

2.7 BG

Let us briefly describe BG, the classifying stack of principal G-bundles. Let G be a smooth affine algebraic
group.

Let’s first describe ∗ = Spec k. This is the Artin stack for which a map from a k-scheme S, i.e. S → ∗,
corresponds to a principal-{1} bundle on S. But that’s just S itself.

Definition 2.7.1. We define BG to be the functor sending a scheme S to the groupoid of principal
G-bundles on S.

Another way to describe BG is as the quotient stack ∗/G. It is an Artin stack, with smooth cover
∗ = Spec k and dimension dim BG = −dim G. So for a scheme S, a map S → BG is just a principal
G-bundle over S. This clarifies the strange idea of negative dimension: to a map S → BG we associated a
principal G-bundle G → S, which gives rise to the Cartesian square

G ∗

S BG

⌟

But the map G → S has relative dimension dim G, so the map ∗ → BG should also have relative dimension
dim G... which forces dim BG = dim Spec k − dim G = −dim G.

Remark 2.7.2. What we mean by a map S → BG is a map of functors; we treat both S and BG as functors
Schop → Grpd by considering every set as a groupoid with no non-identity isomorphisms (equivalently,
every object has no automorphisms besides the identity). But by 2-Yoneda, Hom(S, BG) = BG(S), so we
can canonically identify maps S → BG with principal G-bundles over S.

Example 2.7.3. There is a unique map ∗ → BG. This corresponds to the trivial principal G-bundle G

over ∗ = Spec k.

Example 2.7.4. Let’s compute the pullback of the maps ∗ → BG:

? ∗

∗ BG

⌟

11

Merrick Cai Many abstract notions

Let’s consider maps V to the pullback. We have

V

? ∗

∗ BG

⌟

But the map ∗ → BG corresponds to the trivial G-bundle on ∗; this pulls back to the trivial G bundle
V × G on V . Thus the two composites V → ∗ → BG both correspond to giving a trivial G-bundle on
V such that the projection maps to V agree. In other words, a map V →? is giving the data of an
automorphism of V ×G as principal G-bundles. But this is just maps V → G, giving an automorphism of
G (as a G-torsor) over each fiber. Thus we have that the pullback is G itself:

G ∗

∗ BG

⌟

3 Many abstract notions

From here on in, all categories and functors are derived. For example, QCoh(X) means the derived
category of quasicoherent sheaves on X.

3.1 Why derived categories?

Many things only become apparent at the level of derived categories. For example, the cotangent complex
LX of a scheme X is the “correct” generalization of the cotangent sheaf (i.e. sheaf of differentials), which
often doesn’t satisfy certain desired properties if X isn’t smooth - for example, exactness of certain
sequences. However, the cotangent complex does just that. For example, for maps X

f−→ Y → Z, then we
have the distinguished triangle

f∗LY/Z → LX/Z → LX/Y

in QCoh(X). Furthermore, for a Cartesian square

W X

Z Y

f

⌟

we have the (quasi-isomorphism)
LW/Z ≃ f∗LX/Y .

12

Merrick Cai Many abstract notions

Armed with this, let’s see what this implies about BG. It’s know that

QCoh(X/G) ≃ QCoh(X)G,

i.e. the (derived) category of quasicoherent sheaves on the quotient stack X/G is equivalent to the (derived)
category of G-equivariant quasicoherent sheaves on X. Here, BG = ∗/G, so X = Spec k. In particular, we
get that

QCoh(BG) ≃ Rep G.

But what is the cotangent complex? We can use the Cartesian square

G ∗

∗ BG

f

⌟
g

to deduce that
LG/∗ = f∗L∗/BG.

But G is a smooth affine algebraic variety over Spec k, so LG/∗ is just the ordinary cotangent sheaf (i.e.
sheaf of differentials) of G over Spec k, which is trivializable due to the G-action. Concretely, LG/∗ is the
constant sheaf g∗ on G.

We also have the sequence of maps ∗ g−→ BG→ ∗ which gives us the following distinguished triangle in
QCoh(∗) = Veck:

g∗LBG/∗ → L∗/∗ → L∗/BG.

But L∗/∗ = 0, as this is the cotangent complex of Spec k over Spec k; since Spec k is smooth and affine,
this is the ordinary sheaf of differentials, which is zero. So we have that

L∗/BG = g∗LBG/∗[1].

Thus we have
LG/∗ ∼= g∗ ∼= f∗L∗/G

∼= f∗g∗LBG/∗[1].
Since f∗g∗ = (g ◦ f)∗ is exact, this means that LBG/∗ “only exists” in degree −1; so if we were to try to
look at the cotangent “sheaf” of BG, we wouldn’t see anything!

Explicitly, the equivalence QCoh(BG) ≃ Rep identifies the cotangent complex LBG/∗ with the coadjoint
G-representation g∗, but shifted by [−1].

The main takeaway from all this is that we do actually need the full power of derived categories to see
the whole picture; otherwise, for example, the coadjoint representation in the (underived) category of
G-representations wouldn’t correspond to any quasicoherent sheaf on BG.

13

Merrick Cai Many abstract notions

3.2 Finiteness conditions and IndCoh

In general, we want some sort of finiteness hypothesis, so that the objects we work with are more reasonable.
For example, if X is a scheme which is not smooth, then there exist finitely generated quasicoherent
sheaves F which don’t have finite projective resolutions.

Example 3.2.1. Let Spec k[x]/x2. Then quasicoherent sheaves on X are just modules on k[x]/x2. Since
k[x]/x2 is a local ring, projective modules are just free modules. One simple case is the module M = k,
which does not have a finite free resolution; indeed, it has an infinite free resolution of the form

· · · ·x−→ k[x]/x2 ·x−→ k[x]/x2 ·x−→ k[x]/x2 ·x−→ k[x]/x2 → k.

There are many straightforward ways to see why k does not have a finite free resolution. One way is to
compute that Tork[x]/x2

i (k, k) = k for all i ≥ 0, which implies that any free resolution of k must be infinite,
else the Tor would become eventually zero. Another way is to just compute the Euler characteristic of a
hypothetical finite free resolution. The free modules have even dimension, but k has odd dimension.

There’s two main types of finiteness conditions that we can ask for on a quasicoherent sheaf (or more
generally, a complex of quasicoherent sheaves).

(1) Define Perf(X) to be the complexes in QCoh(X) which are quasi-isomorphic to a bounded (i.e. finite)
complex of finitely generated projectives.

(2) Define Coh(X) to be the complexes in QCoh(X) which are quasi-isomorphic to a bounded complex
of finitely generated sheaves.

If X is smooth, then Perf = Coh, but in general, Coh is bigger. In certain unfortunate scenarios, Perf is
not actually contained in Coh.

These “finiteness” conditions allow us to understand the simpler objects of a category.

Definition 3.2.2. An object c in a (filtered) category C is called compact if it commutes with all filtered
colimits.

Compact objects are useful because they are the objects which are, as the name suggets, more “compact”
or “finite.” In the (underived) category Set, the compact objects are precisely the finite sets. In the
(underived) category R−mod, the compact objects are precisely the finitely presented R-modules. In the
(unbounded, derived) category QCoh(X), the compact objects are precisely Perf(X).

Now, Coh(X) is (generally) bigger than Perf(X), but it’s still a very reasonable and nice “finiteness”
condition. What setting should we work in to consider Coh(X) as the compact objects? The answer is
that we essentially need to construct it formally.

Definition 3.2.3. Let X be a prestack (for example, a scheme). We construct the category IndCoh(X)
by “adjoining all (directed) colimits to Coh(X).” This gives us a category where Coh(X) consists of the

14

Merrick Cai Many abstract notions

compact objects. More concretely, the objects are “formal colimits,” denoted by ĉolim−−−→Fi for Fi ∈ Coh(X),
and the maps are given by

Hom(ĉolim−−−→i
Fi, ĉolim−−−→j

Gj) = lim←−
i

Hom(Fi, ĉolim−−−→Gj) = lim←−
i

colim−−−→
j

Hom(Fi,Gj).

Note that Coh(X) refers to the derived category, and so the Hom is the derived Hom!

Remark 3.2.4. The Ind construction is actually a more general categorical procedure, essentially given
by adjoining all directed colimits. Thus, (in most cases) IndCoh(X) = Ind(Coh(X)). Actually, this is not
true in general, so the above definition is not correct, but we’ll ignore that technicality and pretend our
prestacks are nice.

When X is a smooth scheme, then Perf(X) = Coh(X), so QCoh(X) = IndCoh(X). In general, however,
there’s a functor

IndCoh(X) ΨX−−→ QCoh(X),

ĉolim−−−→Fi 7→ colim−−−→ Fi

sending the “formal colimit” to the actual colimit.

Proposition 3.2.5. We have

IndCoh(X) = lim←−
Spec A→X

IndCoh(Spec A).

Example 3.2.6. For X a scheme, the above proposition is just saying that IndCoh(X) = QCoh(X) are
determined by their sections on affine open covers Ui → X, such that these maps satisfy certain conditions
such as triple intersections, etc.

Example 3.2.7. Let X = Spec R where R = k[x]/x2 and F be the quasicoherent sheaf corresponding to
the R-module k, as in Example 3.2.1. We have the projective (hence, free) resolution of k by

(· · ·R→ R→ R→ R) quasi-iso−−−−−→ k.

In QCoh(X), these two are identified, and this complex is actually the colimit of

Fi := 0→ R→ R→ · · · → R︸ ︷︷ ︸
n times

→ 0.

However, in IndCoh(X), we do not have k being equal to the “colimit” of the Fi. Let us compute why.
If we indeed had k = ĉolim−−−→Fi, then we would have H0(Hom(k, ĉolim−−−→Fi)) = H0(Hom(k, k)) = k. When
we compute the hom-space, however, we find that

HomIndCoh(X)(k, ĉolim−−−→Fi) = colim−−−→
Veck

HomCoh(X)(k,Fi),

= colim−−−→
Veck

HomQCoh(X)

· · · → R→ R→ R→ 0, 0→ R→ · · · → R︸ ︷︷ ︸
i times

→ 0

 .

15

Merrick Cai Many abstract notions

But every map looks like

· · · R R R R R 0

0 R R R R 0

·x ·x ·x ·x

·λ1x·λ3x

·x

0
·x ·x·x

·λ4x ·λ3x

since the left-most commutative square implies that the downwards map xR → R must be zero; hence
each downwards map must be multiplication by some scalar multiple of x (so the λi ∈ k). But then the
H0 of any particular map here is given by the kernel of R

·λx−−→ R modulo the image of R
·x−→ R, hence is

0. It follows that H0(Hom(k, ĉolim−−−→Fi)) = 0, which contradicts the fact that H0(Hom(k, k)) = k, hence
ĉolim−−−→Fi ̸= k in IndCoh(X).

Remark 3.2.8. The first step holds only in IndCoh(X) and not in QCoh(X), as k ∈ Coh(X) is compact in
IndCoh(X), but k ̸∈ Perf(X) hence is not compact in QCoh(X).

The assignment X 7→ IndCoh(X) is functorial, which should not be a surprise given that to every map f

of prestacks we have induced maps on Coh given by f !. Let’s denote this contravariant functor by

IndCoh! : X 7→ IndCoh(X), f 7→ f !
IndCoh.

In fact, IndCoh gives rise to “pushforward” maps as well as “shriek pullback” maps. For a map of prestacks
f : X→ Z, we get adjoint functors

IndCoh(X)
f IndCoh

∗
⇄

f !
IndCoh

IndCoh(Z).

Proposition 3.2.9 ([GR17, §3, Proposition 3.1.2]). Let f : X→ Z be a (inf-schematic nil-isomorphism)
map of prestacks. Then:

(1) The functor f !
IndCoh : IndCoh(Z)→ IndCoh(X) admits a left adjoint, denoted by f IndCoh

∗ .
(2) The functor f !

IndCoh is conservative.
(3) (Base change) Given a Cartesian diagram

X′ X

Z′ Z

ĝ

⌟
ff̂

g

we have the natural isomorphism f̂ IndCoh
∗ ◦ ĝ!

IndCoh
∼−→ g!

IndCoh ◦ f IndCoh
∗ .

3.3 Ind-schemes

The essence of ind-schemes is that they’re just an infinite union of schemes.

Definition 3.3.1. An ind-scheme is, roughly speaking, a (filtered) colimit of closed embeddings of
schemes.

16

Merrick Cai Many abstract notions

Example 3.3.2. Define A∞ := colim−−−→n
Spec k[x1, . . . , xn] with the usual closed embeddings. Note that this

is not the same as Spec k[x1, x2, . . .].

Example 3.3.3. Another famous example is P∞, defined to be the colimit of the closed embeddings
P1 ↪→ P2 ↪→ P3 ↪→ · · · .

Example 3.3.4. The affine Grassmannian of an algebraic group is also an ind-scheme.

The most important example for us today:

Example 3.3.5. Consider the closed embeddings Spec k[t]/tn ↪→ Spec k[t]/tn+1, corresponding to the
surjections k[t]/tn+1 ↠ k[t]/tn. The colimit 0̂ := colim−−−→n

Spec k[t]/tn is an ind-scheme; however, it is not a
scheme in the usual sense, and in particular is it not the same as Spec k[[t]] (which is the formal completion
of the point 0 ∈ A1). Note that the ind-scheme constructed here has a single closed point, plus some “fuzz,”
while Spec k[[t]] has two points - a closed point and a generic point.

Maps from Spec R to 0̂ are exactly maps which factor through some Spec k[t]/tn, that is, nilpotent
elements. So 0̂ as a functor of points sends Spec R to the nilpotent elements of R.

3.4 deRham prestack

We’ll study an extremely important prestack, called the deRham prestack.

Definition 3.4.1. Let X be a prestack (for example, a scheme). We define the deRham prestack XdR

of X by its functor of points: for every scheme S,

Hom(S,XdR) := Hom(Sred,X).

The assignment X 7→ XdR is functorial, and this functor commutes with both limits and colimits. Call
this functor dR. As a result, to every map of prestacks f : X→ Z we have an induced map of deRham
prestacks fdR : XdR → ZdR. We will revisit this in §4.1 in defining D-modules on prestacks.

For every prestack X there is a canonical projection

pX : X→ XdR,

corresponding to the pre-composition with the map Sred → S for any test scheme S; concretely, we have

(S → X) 7→ (Sred → S → X)↔ (S → XdR).

If X = Spec A is an affine scheme and S = Spec R is affine, this is just the canonical post-composition
with the map R ↠ Rred = R/Nil(R): we have

(A→ R) 7→ (A→ R ↠ Rred).

We should think of XdR as “pinching the infinitesimal neighborhoods around every single point,” so that
it kills any “fuzz” (corresponding to nilpotents) around every point simultaneously. This can be weird to

17

Merrick Cai Many abstract notions

think about - for example, for a reduced scheme X, there doesn’t appear to be much fuzz at all. But to
construct XdR, we want to kill even the infinitesimal fuzz around the points in X so that we never see
nilpotents. As an example, let’s see what happens locally around a point in A1.

Example 3.4.2. Let’s compute the pullback of the two maps ∗ 0−→ A1
dR and pA1 : A1 → A1

dR. Call the
pullback X. Then we have the Cartesian square

X A1

∗ A1
dR

⌟
pA1

0

Now it suffices to check what a map Spec R → X is for every affine k-scheme Spec R; this gives us the
diagram

Spec R

X A1

∗ A1
dR

⌟
pA1

0

f

Dualizing this, we have the diagram

Rred

R

? k[t]

k k[t]

⌟

id

0←[t

R∋r← [t

This diagram essentially encodes the data of the map Spec R → A1, which is just a map k[t] → R,
satisfying certain conditions. The condition for this diagram to commute is just that the composite
Spec R → A1 → A1

dR agrees with the composite Spec R → Spec k → A1
dR; in rings, this is just that the

image of t 7→ r ∈ R is such that the image of r under the map R ↠ Rred agrees with the eventual image of
t going the other way, which is t 7→ 0 ∈ k 7→ 0 ∈ R 7→ 0 ∈ Rred, so r ∈ ker(R ↠ Rred), i.e. r is nilpotent.

It follows that the pullback X is just the functor sending an affine scheme Spec R to its set (groupoid)
of nilpotents. This is precisely the ind-scheme 0̂ described in Example 3.3.5. So what we see is that in the
projection A1 → A1

dR, around every single point, we’re essentially “pinching down” the infinitesimal fuzz
around the point (even though A1 is already reduced!), doing the equivalent of the map 0̂→ ∗ for every
point.

18

Merrick Cai Many abstract notions

3.5 Monadic pairs

Monadic pairs form an extremely important type of adjunction. To motivate what’s going on, let’s start
with the ultimate prototype.

Example 3.5.1. Let B → A be a map of commutative rings. Then we have the adjunction

A−mod

⊣

B−mod

ResInd

Here, the restriction map simply realizes an A-module M as a B-module via the map B → A, and the
induction map sends a B-module N to the A-module A⊗B N ; this is just pushforward and pullback of
quasicoherent sheaves on Spec B and Spec A.

Definition 3.5.2. Let (C,⊗) be a monoidal category acting on a category M. The algebra objects are
objects X ∈ C equipped with maps µX : X⊗X → X and εX : 1→ X satisfying certain (infinity-categorical)
properties. They form a category called Alg(C).

Let A ∈ Alg(C). We can form the category of A-modules, denoted by A−mod(M), consisting of
M ∈M equipped with maps µM : A⊗M →M satisfying the usual properties and compatibilities with
µX and εX .

Let’s abstract Example 3.5.1.

Definition 3.5.3. Suppose we have an adjunct pair

C

⊣

D

GF

Denote
T := G ◦ F ∈ End(D).

Then we have adjunctions

ε : idD → GF,

η : FG→ idC .

This gives us a map
µ : T ◦ T = G(FG)G η−→ FG = T.

19

Merrick Cai Many abstract notions

These two maps, ε : idD → T and µ : T ◦ T → T , turn T into an algebra object in End(D). When we have
an equivalence C ≃ T−mod(D), then we say that (C,D, F, G) form a monadic adjunction, and that C
is monadic over D.

In Example 3.5.1, ε was the map B → A, and µ was the map A⊗A→ A. On the other hand, T was
the map M 7→ A⊗B M .

However, given the data of an adjoint pair (F, G) between C,D, it’s not guaranteed that these will
actually form a monadic adjunction. Given a pair of adjoint functors

C

⊣

D

GF

we can form T := G ◦ F ∈ End(D). Then we consider the adjunction

T−mod(D)

⊣

D

forgetfree

Recall that T−mod(D) has objects (d, αd) where d ∈ D and αd : T (d)→ d compatible with the relations on
T . In Example 3.5.1, this is equivalent to the data of A⊗M →M for every B-module M . (The morphisms
are just commutative squares indicating the compatibility of the αd with T .) Then forget is the forgetful
functor sending (d, αd) 7→ d. On the other hand, free is the induction funfctor D → T−mod(D) sending
d 7→ (T (d), µd) where µd : T ◦ T (d)→ T (d) is given by the natural transformation µ : T ◦ T → T encoded
in the data of T being an algebra object.

We also have a natural map GT : C → T−mod(D), as follows. Given d ∈ D, the object G(d) has a
natural T -module structure:

T (G(d)) = G ◦ F ◦G(d) G◦η−−→ G(d),
so we set GT : d 7→ (G(d), G ◦ η). It turns out that free = GT ◦ F :

C

⊣

D ⊥ T−mod(D)

GF
GT

forget

free

20

Merrick Cai D-modules via crystals

If GT induces an equivalence C ≃ T−mod(D), then F, G indeed form a monadic adjunction. In particular,
we’re looking for an equivalence induced by the original adjoint functors F, G via the functor GT described
above.

Remark 3.5.4. T−mod(D) is a terminal object in the category of adjunctions. As such, we’re looking for
an adjoint pair which is “terminal” in some sense.

However there’s actually a very easy way to construct/check for monadic adjunction.

Theorem 3.5.5 (Barr-Beck). Suppose we have a functor G : C → D. Suppose that

1) G is continuous (preserves colimits).
2) G is conservative (if G(f) is an isomorphism, then f is an isomorphism).
3) G admits a left adjoint F .

Then C is monadic over D via the functor G, and (F, G) are a monadic adjunction.

As an immediate corollary, we can deduce the following about IndCoh functors.

Proposition 3.5.6. In the setup of Proposition 3.2.9, then f IndCoh
∗ and f !

IndCoh form a monadic pair.

4 D-modules via crystals

Following [GR17, §4], we define the category of D-modules (on a prestack) to be the category of crystals.
The reason for working with crystals is that it’s easy to set up the necessary functorialities. We’ll see that
when our prestack is a smooth scheme, this construction agrees with the classical definition and notion of
D-modules. As a bonus, we’ll compute the category of D-modules on BG.

4.1 Crystals

Definition 4.1.1. Let X be a prestack. We define the category of crystals on X to be

Crys(X) := IndCoh(XdR).

This assignment is functorial; we have the contravariant functor

Crys! := IndCoh! ◦ dR.

This will be our definition for D-modules on a prestack: the category of D-modules on a prestack
X is defined to be Crys(X) = IndCoh(XdR).

Since this assignment is functorial, for a map of prestacks f : X → Z, we get a resulting map
Crys(Z) → Crys(X), which we will denote by f !

dR. When f is a reasonably nice map (for technical
conditions, it should be ind-nil-proper), this functor has a left adjoint denoted by fdR

∗ , which agrees with

21

Merrick Cai D-modules via crystals

the composition (fdR)IndCoh
∗ , i.e. the resulting pushforward map on IndCoh after applying the deRham

functor dR.
We also have a more concrete description of Crys(X).

Theorem 4.1.2. Let X be a prestack. Then

Crys(X) ≃ lim←−
f : Spec A→X

Crys(Spec A).

4.2 oblv and ind

Let X be a prestack. Then we have a natural projection map

pX : X→ XdR.

This induces a natural map
p!

IndCoh : Crys(X)→ IndCoh(X).
We call this map oblvX, or simply oblv, and it plays the role of the forgetful functor from the “D-module”
to the “underlying sheaf.” Under certain technical conditions (i.e., admits deformation theory), oblv
admits a left adjoint pIndCoh

∗ , which we’ll denote by indX, or simply ind, for induction.
We can also describe the functoriality of oblv and ind more concretely. Let f : X→ Z be a (ind-inf-

schematic) morphism of prestacks (which admit deformation theory, laft?). Then we have the following
commutative diagrams of functors. We have the interaction between oblv and f !:

IndCoh(X) Crys(X)

IndCoh(Z) Crys(Z)

oblv

f !
dRf !

IndCoh

oblv

We also have the interaction between ind and f∗.

IndCoh(X) Crys(X)

IndCoh(Z) Crys(Z)

ind

fdR
∗f IndCoh

∗

ind

Remark 4.2.1. I was told that the people who named oblv did so after “obliviate,” the spell in Harry
Potter which is effectively the forgetful functor. I guess they didn’t extend the same courtesy to the
induction functor ind.

22

Merrick Cai D-modules via crystals

So for a prestack X, we have the adjoint pair

Crys(X)

⊣

IndCoh(X)

oblv=p!
IndCohpIndCoh

∗ =ind (1)

Proposition 4.2.2. The pair (1) is monadic.

Essentially, we just need to check that oblv is conservative, which follows from Proposition 3.2.9.

Definition 4.2.3. To a prestack X we define

DiffX := p!
IndCoh ◦ pIndCoh

∗ = oblv ◦ ind

for the projection map pX : X → XdR, as in (1). This is an algebra object (hence endomorphism) in
IndCoh(X).

Due to the fact that oblv and ind (for the map pX : X→ XdR) form a monadic adjunction, we have
the equivalence

Crys(X) ≃ DiffX−mod(IndCoh(X)).
Thus, to identify Crys(X) with D-modules on X, DiffX plays the role of the sheaf of differential
operators, and IndCoh plays the role of quasicoherent sheaves. This part is literally true in the
case of quasicoherent sheaves: see §4.5.

4.3 t-structure on Crys

The category Crys(X) carries a canonical t-structure, characterized by

M ∈ Crys(X)≥0 ⇐⇒ oblv(M) ∈ IndCoh(X)≥0.

4.4 Base change

Theorem 4.4.1 ([GR17, §4.2.1.3]). Suppose we have a Cartesian diagram of prestacks

X̂ X

Ẑ Z

ĝ

⌟
f̂

g

f

with some technical conditions on f (i.e., f is ind-nil-schematic). Then we have a canonical isomorphism

f̂dR
∗ ◦ ĝ!

dR
∼−→ g!

dR ◦ fdR
∗ .

23

Merrick Cai D-modules via crystals

4.5 D-modules on (smooth) schemes

Let’s see why this indeed recovers the classical notion of D-modules on smooth schemes.
First let’s consider X = A1. We know that XdR = A1

dR, as a functor sends Spec R 7→ Rred. This means
that we can represent this deRham prestack as XdR = A1

dR
∼= A1/0̂, where 0̂ is the functor sending Spec R

to the nilradical of R, as explained in Example 3.3.5.
But then we have a quotient stack, so

QCoh(A1
dR) = QCoh(A1)0̂−equivariant.

But this is just (the derived category of) k[t]-modules M which are also O(0̂)-comodules, or equiv-
alently k[t]-modules M which also carry an O(0̂)∨-action. Since 0̂ = colim−−−→ Spec k[t]/tn, we have
O(0̂) = O(colim−−−→ Spec k[t]/tn) = lim←− k[t]/tn = k[[t]], whose dual vector space is k

[
∂n

x
n! | n ∈ Z>0

]
. So

M should be a module for both k[t]⊗ k
[

∂n
x

n!

]
, which just the Weyl algebra W = k⟨x, ∂n

x
n! ⟩. Therefore for

A1, we see that
Crys(A1) := IndCoh(A1

dR) = QCoh(A1
dR) ≃W−mod,

which indeed recovers the classical notion of a D-module on A1.
Now let’s see what the functors oblv and ind do. We have the natural projection

pA1 : A1 → A1
dR.

This induces the monadic adjunction

IndCoh(A1
dR)

⊣

IndCoh(A1)

oblv=p!
IndCohpIndCoh

∗ =ind

Since IndCoh(A1) = k[t]−mod and IndCoh(A1
dR) = W−mod, we have that oblv = p!

IndCoh is just the
standard pullback map from W −mod to k[t]−mod, i.e. the forgetful functor from D-modules on A1 to
the underlying quasicoherent sheaves on A1. On the other hand, ind is just the left adjoint to oblv, which
in this case sends a module M to the W -module W ⊗k[t] M . So oblv and ind are really the standard pair
of induction-restriction functors. To be even more explicit, we have the identification

Crys(A1) ≃ DiffA1−mod(IndCoh(A1)).

Here, IndCoh(A1) = QCoh(A1) = k[t]−mod. We can compute DiffA1 explicitly on a k[t]-module M :
DiffA1(M) consists of the data of a map W ⊗k[t] M → M compatible with the k[t]-module structure
on M . That’s precisely the data of a D(A1)-module structure on M ! So the statement Crys(A1) ≃
DiffA1−mod(IndCoh(A1)) recovers the classical definition: a D(A1)-module is just quasicoherent sheaf on A1

24

Merrick Cai D-modules via crystals

equipped with an action of the sheaf of differential operators D(A1) (which in this case is just a compatible
action of the Weyl algebra).

Naturally, this construction generalizes immediately to An. It then follows from étale descent and using
the fact that any smooth scheme has an étale cover by affine spaces that

Crys(X) ≃ D−mod(X).

Namely, for any smooth scheme X, crystals on X agree with D-modules on X, so indeed we can
afford to call them D-modules.

Remark 4.5.1. For a more direct and concrete computation that crystals on smooth k-schemes are just
D-modules, see [Lur09, Theorem 0.4].

4.6 Example: D-modules on BG

Let’s describe an explicit example: the D-modules on BG, where G is reductive and finite type (in
characteristic 0, hence also smooth and affine) group scheme. We start with the covering map

σ : ∗ → ∗/G = BG.

This induces the monadic adjunction
Crys(BG)

⊣

Crys(∗)

σ!
dRσdR

!

Let C = Crys(BG) and D = Crys(∗), as in the setup of Definition 3.5.3. Note that

D = IndCoh(∗dR) = IndCoh(∗) = QCoh(∗) = Veck,

the category of vector spaces over k. On the other hand, writing

T := σ!
dR ◦ σdR

! ∈ Alg(Veck),

we have that
Crys(BG) = C = T−mod(D) = T−mod(Veck).

So it suffices to determine how T acts on vector spaces. But in fact the monoidal category of endomor-
phisms of Veck (together with composition of functors) is just Veck itself. By definition the category of
endomorphisms consists of exact continuous functors, hence commutes with colimits - but any vector space
is just a colimit of the generator k, hence any such functor is uniquely determined by where it sends the
generator k. So under this interpretation, T is itself identified with a k-algebra (loosely... more correctly,
an algebra object in Veck, which should be something like a differential graded algebra), i.e. a k-vector

25

Merrick Cai D-modules via sheaves

space with multiplication. In order to determine what algebra this is, we just need to check where T sends
the generator k.

Now we turn to the Cartesian square
G ∗

∗ BG

π

σπ

σ

⌟

which we computed in Example 2.7.4. Using the base change theorem 4.4.1, we find that

σ!
dR ◦ σdR

! (k) = πdR
! ◦ π!

dR(k).

But now we apply the Verdier duality functors. Noting that D(k) = k, we find that

σ!
dR ◦ σdR

! (k) = πdR
! ◦ π!

dR(k),

= Dπ∗DDπ∗D(k),

= Dπ∗π
∗(k),

= (π∗π∗(k))∨,

= H•(G, k)∨,

= H•(G, k),

where H•(G, k) is the homology ring of G with coefficients in k (realized as the dual of H•(G, k), the
cohomology ring). Therefore,

Crys(BG) = H•(G, k)−mod.

5 D-modules via sheaves

5.1 Motivation from classical case

There’s another way to define D-modules, which is as a quasicoherent sheaf on X × X. Suppose X

is a smooth variety. Then we can define the sheaf of differential operators DX on X as the sheaf of
Grothendieck differential operators, and this has a natural algebra structure on it. This naturally has the
structure of an OX -module, since it’s defined on X. However, OX acts on DX on both the left and the
right; since OX is not in the center of DX , this gives us two different actions. So actually we can define
DX on X ×X, corresponding to the left and right multiplication by OX :

OX ↷ DX ↶ OX , DX ∈ QCoh(X ×X).

The natural question is: what is the ring structure? For this, we need to define a map DX ⊗OX
DX → DX .

It will turn out that the multiplication map is just f ⊗ g 7→ fg, where f, g are some product of differential
operators and functions, but we need to abstract this so that we have a construction which works on a
general prestack. Let’s see how this works.

26

Merrick Cai D-modules via sheaves

5.2 Constructing DX ∈ IndCoh(X× X)

Let X be a prestack. We will construct the object DX ∈ IndCoh(X× X).
We have a canonical projection map

pX : X→ XdR.

Then we have the Cartesian diagram

X×XdR
X X

X XdR

⌟
pX

pX

Let us denote
X2

∆̂
:= X×XdR

X

as in the Cartesian square above; then we have a natural map

∆̂ : X2
∆̂
→ X2, X2 := X× X.

To each prestack Z we also have a natural projection map to a point

aZ : Z→ ∗.

Definition 5.2.1. We define the dualizing complex on Z to be the ind-coherent sheaf ωZ := a!
Z k, where

k is the constant sheaf (on ∗ = Spec k).

Definition 5.2.2. We define DX to be the ind-coherent sheaf on X× X

DX := ∆̂∗ωX2
∆̂

= ∆̂∗a!
X2

∆̂
k.

5.3 Multiplication on DX

In this subsection, we’ll describe the “multiplication” map on DX. It will arise out of the following diagram.

X×XdR
X×XdR

X X2
∆̂

X2
∆̂
× X2

∆̂
X3

∗ X2 × X2 X× X

a
X2

∆̂
×X2

∆̂ ∆̂×∆̂ p1,3

f ⌟

id×∆×id

g

p̂1,3

∆̂

The maps p1,3 : X3 → X2 are id×aX × id, sending (x, y, z) 7→ (x, z), and similarly for p̂1,3. The maps f

and g are the induced maps from the pullback.

27

Merrick Cai D-modules via sheaves

Let’s now construct a map DX⊗OX
→ DX. For a map f : X → Y , we have f IndCoh

∗ : IndCoh(X) →
IndCoh(Y) and f !

IndCoh : IndCoh(Y)→ IndCoh(X). For the sake of brevity, the IndCoh notation is omitted,
and just written as f∗ and f !.

ω ∈ X×XdR
X×XdR

X X2
∆̂

ω ∈ X2
∆̂
× X2

∆̂
X3

k ∈ ∗ DX ⊠ DX ∈ X4 X× X

a
X2

∆̂
×X2

∆̂ ∆̂×∆̂ p1,3

f

⌟

id×∆×id

g

p̂1,3

∆̂

a!
X2

∆̂
×X2

∆̂

(∆̂×∆̂)∗
(id×∆×id)!

(p1,3)∗

f !
g∗

(p̂1,3)∗

∆̂∗

First we need to justify that the red is indeed correct.

Lemma 5.3.1. The (ind-coherent) sheaves in red are the results of the ∗-pushforward and !-pullback
functors, also written in red.

Proof. First we start with k on ∗. Next, by definition, a!
X2

∆̂
×X2

∆̂
k = ωX2

∆̂
×X2

∆̂
= ωX2

∆̂
⊠ ωX2

∆̂
. Next, it’s clear

that the map (∆̂× ∆̂)∗ sends it to ∆̂∗ωX2
∆̂
⊠ ∆̂∗ωX2

∆̂
= DX ⊠ DX. Taking f ! instead yields

f !ωX2
∆̂
×X2

∆̂
= f !a!

X2
∆̂
×X2

∆̂
k = a!

X×XdR
X×XdR

X k = ωX×XdR
X×XdR

X.

The fact that g∗ω = (id×∆× id)!DX ⊠ DX comes from base change; the fact that the last two arrows also
compose to ∆̂∗(p̂1,3)∗ω comes from the fact that ∆̂∗(p̂1,3)∗ = (∆̂ ◦ p̂1,3)∗ = (p1,3 ◦ g)∗ = (p1,3)∗ ◦ g∗. □

As a result:

Corollary 5.3.1.1. We have

(p1,3)∗(id×∆× id)!DX ⊠ DX = ∆̂∗(p̂1,3)∗(p̂1,3)!ωX2
∆̂

.

Proof. By the lemma (and diagram) above, we have

∆̂∗(p̂1,3)∗(p̂1,3)!ωX2
∆̂

= (∆̂ ◦ p̂1,3)∗
(

(p̂1,3)!ωX2
∆̂

)
,

= (p1,3 ◦ g)∗ωX×XdR
X×XdR

X,

= (p1,3)∗g∗f !ωX2
∆̂
×X2

∆̂
,

= (p1,3)∗(id×∆× id)!(∆̂× ∆̂)∗ωX2
∆̂
×X2

∆̂
,

= (p1,3)∗(id×∆× id)!DX ⊠ DX.

□

28

Merrick Cai D-modules via sheaves

Lemma 5.3.2. We have an adjunction (p̂1,3)∗ ⊣ (p̂1,3)!.

Proof. The map p̂1.3 arises out of the Cartesian square

X×XdR
X×XdR

X X×XdR
X

X XdR

p̂1,3

pX

⌟

Since (pX)∗ ⊣ (pX)!, by base change, the same is true for p̂1,3. □

Definition 5.3.3. We define the “multiplication” map µDX
: (p1,3)∗(id×∆× id)!DX⊠DX → DX as follows.

Since (p̂1,3)∗ ⊣ (p̂1,3)!, the identity map

id : (p̂1,3)!ωX2
∆̂
→ (p̂1,3)!ωX2

∆̂

gives rise to a map
µ̃ : (p̂1,3)∗(p̂1,3)!ωX2

∆̂
→ ωX2

∆̂
.

Then we define
µDX

= ∆̂(µ̃) : ∆̃∗(p̂1,3)∗(p̂1,3)!ωX2
∆̂︸ ︷︷ ︸

(p1,3)∗(id×∆×id)!DX⊠DX

→ ∆̂∗ωX2
∆̂︸ ︷︷ ︸

DX

.

This gives us a map (p1,3)∗(id×∆× id)!DX ⊠ DX → DX, as a map of ind-coherent sheaves on X× X.
The reason for the name “multiplication” will become apparent soon. However, for now, note that for X a
smooth scheme, we actually have

(p1,3)∗(id×∆× id)!DX ⊠ DX = DX ⊗OX
DX ,

hence the name is justified (at least in this case).

5.4 D-modules via DX

In order to describe the category of D-modules, we’ll need several facts. First, IndCoh(X×X) is monoidal,
but we have two monoidal structures. The first is −⊗! −; this holds for IndCoh(Z) for any prestack Z, not
just those which are of the form X× X, and it comes from the map

∆ : Z→ Z2.

The monoidal structure here is defined by

F ⊗! G := ∆!(F ⊠ G).

29

Merrick Cai D-modules via sheaves

The second monoidal structure, special to X× X, comes from the maps

X× X× X

X2 × X2 X2

id×∆×id id×aX×id

Then to F ,G ∈ IndCoh(X2) we define

F ⋆ G := (p1,3)∗(id×∆× id)!F ⊠ G

on X2. We call this monoidal operation convolution and will denote it by (− ⋆−). In particular, note
that

(p1,3)∗(id×∆× id)!DX ⊠ DX = DX ⋆ DX,

so that the map µDX
becomes a map

µDX
: DX ⋆ DX → DX,

thus justifying the name “multiplication.” This turns DX into an algebra object:

DX ∈ Alg((IndCoh(X× X), ⋆)).

Second, the category IndCoh(X) is an (IndCoh(X2), ⋆)-module (using convolution). The action is given as
follows. Let pr1, pr2 be the two projection maps X2 → X. Then for M∈ IndCoh(X) and A ∈ IndCoh(X2),
the action is given by

A ·M := (pr2)∗
(
A⊗! pr!

1M
)

.

Finally, knowing that DX is an algebra object in IndCoh(X2) and IndCoh(X) is a module for the category
IndCoh(X2), then we can form the category

DX−mod(IndCoh(X)).

Remark 5.4.1. The monoidal category IndCoh(X × X) equipped with convolution can be viewed as a
categorification of integral kernels. In the finite-dimensional setting, these are just matrices. The ⊗!

operation on IndCoh(X × X) corresponds to pointwise multiplication, which in the finite-dimensional
setting corresponds to multiplying matrices entrywise. However, the convolution monoidal structure
corresponds to function composition, and in the finite-dimensional setting, corresponds to multiplying
matrices the usual way. (Composing integral transforms is even given by convolution of the kernels.)
So our “multiplication” map is perhaps better described as “composition” map, in the same way that
multiplication on the sheaf DX on a smooth scheme X corresponds to composition of the endomorphisms
of OX , not pointwise multiplication of the endomorphisms.

5.5 The two constructions agree

First, we need to know the identity under ⊗!.

30

Merrick Cai D-modules via sheaves

Lemma 5.5.1. Let F ∈ IndCoh(X). Then F ⊗! ωX = F .

Proof. We have the diagram

X X2 X× ∗∆ id×aX

id
Note that id×aX = pr1. From this, we compute that

F ⊗! ωX = ∆!(F ⊠ ωX),

= ∆!(id!F ⊠ a!
X k),

= ∆!pr!
1(F ⊠ k),

= id!(F),

= F .

□

This means that ω is the identity element for the monoidal structure ⊗!.

Theorem 5.5.2. The operation DX · − is precisely the endofunctor DiffX. In particular, we have an
equivalence

Crys(X) ≃ DX−mod(IndCoh(X)).

Proof. We have the Cartesian square, along with maps to and from X2:

X2

X2
∆̂

X

X XdR

f
⌟

pXg

pX

∆̂
pr2

pr1

Now let F ∈ IndCoh(X). Then using Lemma 5.5.1 and Theorem 4.4.1 (base change), we can compute

DX · F = (pr2)∗(∆̂∗ω ⊗! (pr1)!F),

= (pr2)∗∆̂∗(ω ⊗! ∆̂!(pr1)!F),

= (pr2 ◦ ∆̂)∗(pr1 ◦ ∆̂)!F ,

= f∗g
!F ,

= (pX)!(pX)∗F ,

= oblv ◦ ind(F),

= DiffX(F).

□

31

Merrick Cai D-modules via sheaves

5.6 D-modules on BG, part 2

Let’s compute DBG, and from this deduce the category of D-modules on BG, in a different way than in
§4.6. We need some conditions on G again, so assume that G is reductive (hence smooth affine, since we’re
in characteristic 0) and finite type.

First, we want to compute the pullback

? ∗

BG2
∆̂

BG2
∆̂

⌟

where ∗ → BG2 is the covering map. In other words, we want to compute

(BG×BGdR
BG)×BG×BG ∗.

We can compute this pullback as the limit of the following diagram:
∗ ∗ ∗

BG ∗ BG

BG BGdR BG

The reason for this is that the limits over the rows are given by ∗, BG×BG, and BG2
∆̂

; it follows that
the limit over the entire diagram is given by the pullback via the maps

∗ → BG×BG← BG2
∆̂

,

which is indeed the pullback we wish to compute. If we instead compute the limit of the columns first,
then the limit over the diagrams becomes the limit of the diagram

∗ → BGdR ← ∗,

which (after using the fact that BGdR = B(GdR)) is just the pullback

∗ ×BGdR
∗ = ∗ ×B(GdR) ∗ = GdR.

It follows that the pullback of the original Cartesian square is GdR, and we find the Cartesian square

GdR ∗

BG2
∆̂

BG2

aGdR

qf

∆̂

⌟

32

Merrick Cai D-modules via sheaves

Now consider ω = ωBG2
∆̂

. Then by base change, we find that

q!DBG = q!∆̂∗ω = (aGdR
)∗f !ω = (aGdR

)∗ωGdR
= Γ(GdR, ωGdR

) = HBM
• (G),

the Borel-Moore homology of G. So we at least find that the underlying vector space of DBG is HBM
• (G).

Since we assume that G is connected, then G acts trivially on HBM
• (G).

Since BG2 is smooth, we have

IndCoh(BG2) ≃ QCoh(BG2) ≃ Rep(G2).

This means that we need to understand the G2-action on a HBM
• (G)-module in order to understand DBG.

Remark 5.6.1. The equivalences are not completely straightforward; for example, the identification
QCoh(BG2) ≃ Rep(G2) does not commute with pushforwards. This will be an important detail later.

Let’s now identify IndCoh(BG2) ≃ Rep(G2). Note that the pushforward along BG
pBG−−→ ∗ corresponds

to taking G-invariants, and the pullback along pr1 : BG × BG → BG corresponds to sending V 7→ V ,
where G×G acts by factoring through G× 1. Now we have projection maps

BG×BG

BG BG

pr1 pr2

and a diagonal map
∆BG2 : BG2 → BG2 ×BG2.

Let V ∈ IndCoh(BG) ≃ Rep(G). Then

DiffBG(V) = (pr2)∗
(
DBG ⊗! (pr1)!V

)
,

= (pr2)∗(∆BG2)!
(
DBG ⊠ (pr1)!V

)
.

= (pr2)∗(DBG ⊗ V),

= (pr2)∗
(
HBM
• (G)⊗ V

)
,

= invG×1 (H•(G)⊗ V) ,

= H•(G)⊗ invG(V).

Remark 5.6.2. The identification of (pr2)∗ with taking G-invariants involves identifying IndCoh(BG2) with
Rep(G2), but this identification doesn’t preserve pushforwards - there’s a discrepancy which involves a
shift, which explains the change from HBM

• (G) to H•(G).

So if we want a module for DiffBG, we need a map µV : DiffBG(V) → V which makes the following

33

Merrick Cai D-modules via sheaves

diagram commute:
V DiffBG(V)

V
id

µV

(The top map comes from adjunction.) But we computed that DiffBG(V) = H•(G) ⊗ invG(V), hence
kills every component with a nontrivial G-action. So actually a module for DiffBG is a trivial
G-representation. This gives us the result that

DBG−mod(G−rep) ≃ DiffBG−mod(G−rep) ≃ H•(G)−mod.

Remark 5.6.3. It may seem strange that a D-module on BG, which should just be a G-representation
with an action by DBG, never actually has any G-action. This is essentially due to the interpretation of
D-modules as quasicoherent sheaves with flat connection - the flat connection part essentially forces the
G-action to be trivial.

References

[DG13] Vladimir Drinfeld and Dennis Gaitsgory. On some finiteness questions for algebraic stacks.
Geometric and Functional Analysis, 23(1):149–294, 2013.

[GR17] Dennis Gaitsgory and Nick Rozenblyum. A study in derived algebraic geometry: Volume ii:
Deformations, lie theory and formal geometry. Mathematical surveys and monographs, 221, 2017.

[Lur09] Jacob Lurie. Notes on crystals and algebraic d-modules. Available on homepage of the author,
2009.

34

	Overview
	Stacks
	Motivation
	Groupoids
	From presheaves to prestacks
	From sheaves to stacks
	Algebraic spaces
	Artin stacks
	BG

	Many abstract notions
	Why derived categories?
	Finiteness conditions and IndCoh
	Ind-schemes
	deRham prestack
	Monadic pairs

	D-modules via crystals
	Crystals
	oblv and ind
	t-structure on Crys
	Base change
	D-modules on (smooth) schemes
	Example: D-modules on BG

	D-modules via sheaves
	Motivation from classical case
	Constructing DXIndCoh(XX)
	Multiplication on DX
	D-modules via DX
	The two constructions agree
	D-modules on BG, part 2

